Batteryless wireless switches control lighting and shading
Batteryless wireless temperature and humidity sensors govern HVAC systems
CO₂ sensors monitor indoor air quality
Occupancy sensors trigger lighting and climate control systems
Networked smoke sensors set off fire alarms to trigger emergency response

Batteryless wireless window contacts monitor window status
Batteryless wireless door/window handles monitor door/window status
Actuators control heating, ventilation and shading
Wireless actuators control radiators
Batteryless wireless control units allow for optimal climate conditions and maximum operating comfort
Use Case School Building

And these are the benefits for

Architects
- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Investors / School Authorities
- Reduced cost of installation and operation
- Flexible space planning and easy restructuring
- High energy savings
- Interoperable and scalable standard solutions

Specifiers
- Simplified planning and high flexibility through freely positionable devices
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

Facility Managers
- Flexibility, no maintenance needed
- Optimized servicing
- Effective manpower use
- Increased safety levels
- Faster reaction to system faults
- Reduced noise/dust/dirt
- Interoperable and scalable standard solutions

System integrators / Contractors
- Speedy, flexible installation & system start-up
- No cabling, no drilling, no noise/dust/dirt
- Simple retrofit during undisturbed operation

Facility users
- Enhanced comfort
- Pleasant learning environment with good air quality

References

Zentrum für Virtuelles Engineering ZVE (Germany)
Sir Isaac Newton Academy (UK)
Georgia Institute of Technology (USA)
University of Western Ontario (Canada)