Use Case Historic Building

Batteryless wireless window contacts monitor window status
Batteryless liquid detection sensors monitor fluid leaks
Occupancy sensors trigger lighting and climate control systems
CO₂ sensors monitor indoor air quality
Networked smoke sensors set off fire alarms to trigger emergency response

Batteryless wireless switches control lighting and shading
Batteryless wireless door/window handles monitor door/window status
Batteryless wireless door contact switches monitor door status
Actuators control heating, ventilation and shading according to requirements and specifications
Batteryless temperature and humidity sensors monitor indoor air quality
Use Case Historic Building

And these are the benefits for

Architects
- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Investors / Property Owners
- Reduced cost of installation and operation
- Simplified restructuring
- Easier refurbishment
- High energy savings
- Interoperable and scalable standard solutions

Specifiers
- Simplified planning and high flexibility through freely positionable devices
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

Facility Managers
- Flexibility, no maintenance needed
- Optimized servicing
- Effective manpower use
- Increased safety levels
- Faster reaction to system faults
- Interoperable and scalable standard solutions
- Reduced noise/dust/dirt

References

Taimadera Buddhist Temple (Japan)
Semperoper, Dresden (Germany)
Queen Annes Gate (UK)
St. Andrews Cathedral (Canada)