Batteryless wireless switches control lighting and shading

Batteryless wireless temperature and humidity sensors govern HVAC systems

CO₂ sensors monitor indoor air quality

Occupancy sensors trigger lighting and climate control systems

Networked smoke sensors set off fire alarms to trigger emergency response

Batteryless wireless window contacts monitor window status

Batteryless wireless door/window handles monitor door/window status

Actuators control heating, ventilation and shading

Wireless actuators control radiators

Batteryless wireless control units allow for optimal climate conditions and maximum operating comfort
Use Case School Building

And these are the benefits for

Architects
- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers
- Simplified planning and high flexibility through freely positionable devices
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors
- Speedy, flexible installation & system start-up
- No cabling, no drilling, no noise/dust/dirt
- Simple retrofit during undisturbed operation

Investors / School Authorities
- Reduced cost of installation and operation
- Flexible space planning and easy restructuring
- High energy savings
- Interoperable and scalable standard solutions

Facility Managers
- Flexibility, no maintenance needed
- Optimized servicing
- Effective manpower use
- Increased safety levels
- Faster reaction to system faults
- Reduced noise/dust/dirt
- Interoperable and scalable standard solutions

Facility users
- Enhanced comfort
- Pleasant learning environment with good air quality

References

Zentrum für Virtuelles Engineering ZVE (Germany)
Sir Isaac Newton Academy (UK)
Georgia Institute of Technology (USA)
University of Western Ontario (Canada)