

EnOcean Alliance – the batteryless wireless standard for smart buildings

Self-powered switches, sensors and control units save time and money during installation and guarantee higher energy efficiency.

Graham Martin, CEO & Chairman, EnOcean Alliance

Contents

- Introduction
- The benefits of EnOcean technology
- Technical basics
 - EnOcean principle
 - Energy harvesting | Energy conversion
 - Wireless principles
 - Data transmission
 - Signal absorption
 - Range planning
 - Wireless data transmission in building automation
 - Wireless technology when does it make sense?
 - Application examples
 - Security
 - Interoperability / Certification
- System start-up & troubleshooting
 - Standard
 - "Remote commissioning"
 - Troubleshooting

- Calculation examples
 - Time savings during installation
- Internet of Things (IoT)
- Cognitive (learning) buildings
- EnOcean applications
- Impact of building automation and of EnOcean upon the certification of buildings
- Case studies / References
- Videos
 - Links to EnOcean Alliance videos

Introduction

EnOcean – the batteryless wireless standard for smart buildings

The **EnOcean Alliance** is a non-profit organization founded in 2008. Our mission: to supply standardized, interoperable solutions for intelligent buildings and Smart Homes based upon batteryless wireless technology.

Our **Aim**: to develop and market a broad range of interoperable batteryless wireless solutions for intelligent buildings, Smart Homes and IoT-applications.

Our **Vision**: to help create a better, safer, more energy-efficient and ecologically friendly world through the widespread use of intelligent, batteryless wireless sensor technology.

EnOcean in building automation

The Squaire, Frankfurt: 20.000 EnOcean-based products

- High flexibility & simplified planning
- Energy savings of up to 30%
- Cost and time savings
- No battery problems / no maintenance
- Interoperable products from different suppliers (international standard)

Networking with building automation systems

EnOcean in Smart Homes

EnOcean technology is already at home in 500.000 + buildings

- More comfort & security
- Simplified Installation
- Interoperable products from different suppliers (international standard)
- From senior citizens' homes to apartments and residential buildings
- No battery problems / no maintenance
- Seamless connection with different Smart Home standards and devices

Networking with Smart Home systems

Internet of Things – a connected world with batteryless wireless technology

- Applications in the Internet of Things (IoT) make use of networked devices in buildings und Smart Homes
- Standardized wireless communication transmits sensor data and information to IoT-applications
- Batteryless wireless devices are the key to maintenance-free wireless sensor applications
- Seamless communication in the Smart Home of the future – a broad multi-supplier network independent of standards, technologies and devices

The benefits of EnOcean technology

Batteryless and wireless EnOcean devices

- High degree of flexibility
- High security
- Cost savings
- Reliable, future-oriented technology
- Energy efficiency
- Minimal / no maintenance
- No cabling / power supply for sensors
- Easy to commission

Benefits of batteryless wireless technology: for investors

Shorter build times

- Minimized contractor-to-contractor interaction
- Reduced building-site phase

Flexibility

- Properties can be rented out immediately upon completion
- Fit-out by the tenants

New areas of business

- Full-service offers
- with reduced costs (maintenance-free sensors/actuators)

Reduced costs

- 15 20% cost reduction for new buildings
- Up to 70% cost reduction for retrofits
- Up to 40% less energy consumption

Benefits of batteryless wireless technology: for specifiers

Smaller cable networks

- Cabling only in floors and ceilings.
- Reduced building-site phase.

Flexibility

- Initially "only" the basics functions are required (lighting, HVAC per section/floor).
- Freely positionable sensors/actuators.

Reduced costs

Approx. 20% reduction vs. conventional installation.

Benefits of batteryless wireless technology: for property users

Reduced energy costs

Automated functions for minimal energy consumption without impaired comfort

Flexibility

Flexible room configuration and easy / simple space conversion

Improved workplace environment

- Studies prove the positive effects of optimal building automation
- Higher productivity
- Less sick-leave / absence

Benefits of batteryless wireless technology: for contractors & system integrators

Simplicity

No cabling necessary

Flexibility

Quick and simple system adjustment to satisfy new requirements

Integration

Easy integration in existing building automation systems via gateways

Benefits of batteryless wireless technology: for property owners

Comfort

Enhanced comfort through automation

Security

More security (window-/door-contacts, networked smoke sensors, liquid detection sensors, occupancy simulation)

Reduced costs

15 – 20% cost reduction for new buildings

Flexibility

- Easy restructuring of rooms, areas, floors
- Freely positionable sensors / actuators

Energy savings

Maximal comfort with minimal energy consumption

Technical basics

- EnOcean principle
- Energy Harvesting | Energy conversion
- Wireless principles
 - Data transmission
 - Signal absorption
 - Range planning
- Wireless data transmission in building automation
 - Wireless technology when does it make sense?
 - Application examples
- Security
- Interoperability / Certification

Technical basics

EnOcean principle

- Energy Harvesting | Energy conversion
- Wireless principles
 - Data transmission
 - Signal absorption
 - Range planning
- Wireless data transmission in building automation
 - Wireless technology when does it make sense?
 - Application examples
- Security
- Interoperability / Certification

EnOcean principle

- EnOcean wireless protocol ISO/IEC-Standard 14543-3-1X
- License-free frequency bands below 1 GHz
 - 868 MHz in Europe and China
 - 902 MHz in North America
- Uni/bi-directional communication
- Standardized protocol and sensor profile
- Each transmitter has its unique address (32Bit-ID)

EnOcean principle

- Approx. 30m indoors
- Extended range with repeaters (Level 1 and Level 2)

Secure data transmission

- Burst telegrams ~ 1ms
- 3 5 asynchronous repeats
- Encoding with rolling code (authentification)

EnOcean is environmentally friendly – more so than all other wireless technologies

Technical basics

EnOcean principle

- Energy Harvesting | Energy conversion
- Wireless principles
 - Data transmission
 - Signal absorption
 - Range planning
- Wireless data transmission in building automation
 - Wireless technology when does it make sense?
 - Application examples
- Security
- Interoperability / Certification

Energy harvesters and their applications

Kinetic energy Electromechanical generator

Application

Switch / push button

Solar energy Module with energy reservoir

Temperature and humidity sensors, motion detectors, room control units

10

Thermal energy Energy generation through temperature difference

Actuators for radiators, temperature sensors

Magnetic-field energy

Energy conversion from the magnetic field generated by the power cable to be monitored

Smart metering

Energy harvesting through movement

- Linear movement (e.g. pressing a button) or rotary motion (e.g. turning a window handle) is converted into electric energy
- A minimal impulse (350 µWs) is sufficient to generate and encode a signal, and to repeat transmission 3-5 times
- Electrodynamic generator lifetime: up to 1.000.000 cycles

Energy harvesting through light

- Light intensity indoors: 50 1.000 lx
- Light intensity outdoors: 1.000 100.000 lx
- Devices function and charge from 50 lx up
- Fully charged devices function 3 -7 days in complete darkness
- Example: typical light intensity in hotels

Reception	300 - 700 lx
Restaurant	150 - 300 lx
Staircase	50 - 150 lx
Room – daylight	200 - 900 Ix
Room – illumination	100 - 500 lx

Background information: customary light levels in buildings

Schools

Classroom blackboard area	500 – 1.000 lx
Typical classroom	300 – 500 lx

Office buildings

PC workplace	200 – 500 lx
Conference room	300 – 700 lx
Corridor	50 – 100 lx

Hotels

Reception Restaurant Staircase 300 – 700 lx 150 – 300 lx 50 – 150 lx

Energy harvesting through temperature difference – Peltier/Seebeck effect

- A thermoelectric element generates tension at the junction between two metals having different temperatures. This effect was discovered in 1821 by Thomas Johann Seebeck
- On the other hand, whenever a current is applied to a thermoelectric element a temperature difference occurs (discovered in 1834 by Jean Charles Athanase Peltier)
- Many such elements are available at low cost and constitute ideal sources of energy

Energy harvesting through magnetic fields

- Energy conversion from the magnetic field generated by the power cable to be monitored
- Minimally invasive smart metering without cutting the power cable.

Technical basics

EnOcean principle

Energy Harvesting | Energy conversion

Wireless principles

- Data transmission
- Signal absorption
- Range planning
- Wireless data transmission in building automation
 - Wireless technology when does it make sense?
 - Application examples
- Security
- Interoperability / Certification

Technical basics: data transmission

Frequency

Use of license-free frequency bands

Range

- Low frequency, high reach
- Locate receivers within recommended range
- Consider absorption / penetration angles

Signal absorption

- Metal and concrete can block most signals
- Other materials can also reduce signal range

Technical basics: data transmission

Wireless transmission displays elliptic properties. Evaluation of maximum range therefore requires more than line-of-sight appraisal.

This must be borne in mind. For example, a maximum range of 30m means that the ellipse only measures 10m in the middle. Therefore, narrow corridors with massive concrete walls are not ideal.

Technical basics: signal absorption

Signal absorption

Radio signals can penetrate walls – however, the signals may be weakened. The degree of signal absorption depends upon the material in question.

Examples

- Wood, plaster, uncoated glass, without metal
 0 10%
- Brick, chipboard
 - 5 35%
- Ferroconcrete
 - 10 90%
- Metal, aluminium lamination
 90 100%

Technical basics: penetration angles

- The angle affects the signal's path due to varying thickness of the material in its way – and, therefore, impacts the signal strength.
- Signals should ideally be routed perpendicularly through masonry, and niches should be avoided.

If oblique signal paths cannot be avoided, we recomment using a repeater and/or changing the transmitter and/or receiver's position.

Technical basics: antenna installation & sources of interference

- Routing signals along a wall is not recommended (e.g. in a long corridor).
- When laying a shielded antenna cable, be sure to avoid kinking (and irreparably damaging) it.
- The EnOcean receiver should not be placed within 50cm of high-frequency transmitters. Placing of EnOcean transmitters is uncritical.868 MHz-RFID technology should not be employed in the vicinity.

Range planning: step 1

Range planning: step 2

Mark the signal-shielding areas on the floor plan

firewalls, elevators, stairwells, laundry rooms, service areas

Range planning: step 3

Mark 10-15m diameter areas on the plan

- 10m diameter areas guarantee adequate safety margins
- The center of the circle = receiver position (1m tolerance plays little role)

Planning example: Torre Espacio, Madrid

Range planning – equipment / measures

- Rangefinding instruments for indoor and outdoor use available.
- Prudent use of level 1 and/or level 2 repeaters recommended.
- Optimize systems, connect transmitters/sensors with 2 gateways.
- Download the information brochure "Reliable range planning".

https://www.enocean.com/range-planning/

Technical basics

EnOcean principle

- Energy Harvesting | Energy conversion
- Wireless principles
 - Data transmission
 - Signal absorption
 - Range planning

Wireless data transmission in building automation

- Wireless technology when does it make sense?
- Application examples
- Security
- Interoperability / Certification

Wireless technology – when does it make sense?

- Whenever building automation systems are involved (energy savings, central control systems, energy monitoring, legal & regulatory requirements)
- Whenever furniture and/or partition walls need to be periodically rearranged, or whenever glass walls are to be used
- In open-plan offices or multi-purpose buildings
- Whenever renovation calls for extensive re-cabling work (avoiding or reducing costs, time, drilling and noise/dust/dirt)
- Whenever timelines are of critical importance
- Whenever ecological certification is called for (green / sustainable building certificates)

Decentralized control system: example lighting

- Wireless actuators for each light, or group of lights, are required
- They are installed between the lights and their power supply
- Wireless light switches are individually connected with the actuators (pairing)
- Ideal for small-scale installations and restructuring/modernization projects

Centralized control system: example lighting

- Normally, one central control unit is employed for each storey (or section of a large open-plan office)
- Can also be operated as a stand-alone system (without gateway)
- Can be connected with the central building automation system (TCP/IP)
 - In smaller buildings with up to two storeys this can be achieved through wireless batteryless technology
 - In larger buildings a connection employing an Ethernet cable is recommended
- This solution can also be adopted for HVAC applications

Decentralized control for HVAC, shading and lighting

Decentralized control for HVAC, shading and lighting with gateway

Centralized control for HVAC, shading and lighting

Centralized control for HVAC, shading and lighting

Decentralized / centralized control for HVAC, shading and lighting

Technical basics

- EnOcean principle
- Energy Harvesting | Energy conversion
- Wireless principles
 - Data transmission
 - Signal absorption
 - Range planning
- Wireless data transmission in building automation
 - Wireless technology when does it mke sense?
 - Application examples
- Security
- Interoperability / Certification

Hardware security

- One-off, clear 32bit ID for each and every EnOcean module
 - ID cannot be changed
- Special-purpose ID
 - Preliminary, factory-programmed baseID
 - 128 Ids can be assigned (BaseID+0..BaseID+127)
 - BaseID can be reassigned up to ten times

Secure data transmission

- Rolling Code^{*} protects against
 - copy & paste attack
 - copy & change attack
- Encoding* protects against
 - "eavesdropping"
 - encoded data is not legible for the "eavesdropper"

* Depending on product and manufacturer

"EnOcean security layer" integrated into the protocol stack

Technical basics

- EnOcean principle
- Energy Harvesting | Energy conversion
- Wireless principles
 - Data transmission
 - Signal absorption
 - Range planning
- Wireless data transmission in building automation
 - Wireless technology when does it make sense?
 - Application examples
- Security

Interoperability / Certification

Interoperability

Standardized sensor profiles ensure interoperability between products from various different manufacturers and make interoperable system solutions possible.

(c) EnOcean Alliance | Graham Martin | Nov 2017

Certification: interoperability for diverse solutions

Standardized test procedures

in accordance with EnOcean Alliance test parameters

Interoperability in the physical sense

"Air Interface" specification

Interoperability in terms of communication

"Communication Profiles" specification

Guidelines and documentation

EnOcean Alliance Certification Handbook

Certification: interoperability for diverse solutions

System start-up & troubleshooting

Standard

- "Remote commissioning"
- Troubleshooting

System start-up – standard

Step 1

Connect appliance (lighting, sunblinds, heating) with the actuator.

Step 2

Initialize switches and sensors once using a simple learn mode (pairing) connecting them with the actuators.

Step 3

Sensors and actuators interact without gateway (simple solutions).

Actuator

57

System start-up – standard with room controller

Step 1 Fit actuators to the radiators

Step 2

Initialize actuators once using a simple learn mode (pairing) connecting them with the room controller

Step 3

Actuators and the room controller interact (e.g. individual room control)

System start-up – standard with gateway

Step 1 Connect appliance (lighting, sunblinds, heating) with the actuator

Step 2

Initialize sensors and actuators once using a simple learn mode (pairing) connecting them with the gateway

Step 3

Sensors and actuators interact via gateway (complex solutions)

Actuator

System start-up & troubleshooting

Standard

- Remote commissioning"
- Troubleshooting

Scan the switch (product-ID, EnOcean-ID).

Step 2 Add the switch to the connection list of the actuator via wireless connection. Adjust parameters if needed (e.g. mode, dimming rate).

Step 3 Switch can control the actuator straight away.

System start-up & troubleshooting

Standard

- "Remote commissioning"
- Troubleshooting

System start-up

Sensor and actuator are not communicating - why?

- Establish sensor-actuator connection according to device instructions
- Delete "old" connections (see device instructions)
- Check transmission range limit before installation (using tester, mock-up)
- Follow range-planning guidelines
- Charge sensors with solar module prior to installation (as per instructions)

System start-up

Sensor, actuator and gateway are not communicating - why?

- Establish sensor-actuator, sensor-gateway, gateway-actuator connections according to manufacturer's instructions.
- Delete "old" connections (see device instructions).
- Check transmission range limit before installation (using tester, mock-up).
- Follow range-planning guidelines.
- Charge sensors with solar module prior to installation (as per instructions).
- Check gateway documentation to ensure that your sensors/actuators are supported. If not, use alternative sensors/actuators.

Logic / Parameterization of scenes

Why doesn't the parameterized scene "work" as intended?

- Conduct a plausibility check for the parameterized triggers (system status, events, times).
- Ensure that the desired parameterization is compatible with the gateway (manufacturer hotline, internet forums etc.).
- Exclude contradictory parameterization with the same devices, but with other triggers (events, times).
- Parameterize and test the scenes step by step.

Sources of interference

Why does interference occasionally disturb wireless communication between devices?

- simple[#] devices which also transmit/receive on 868 MHz may disturb EnOcean-signal reception, e.g.
 - wireless thermometer
 - wirelessly networked smoke detectors (e.g. when triggered)

Indoor/outdoor

Why are sensors/actuators malfunctioning?

Some devices are not intended for outdoor use by the manufacturer. They may function outdoors for a short time but are not weather-resistant and therefore subject to internal corrosion etc. Please select your devices with this in mind.

Manufacturers / suppliers

Where can I find further information?

In the manufacturer's documentation, webpage and online resources including video tutorials and user forums.

Calculation examples

Time savings during installation (commercial building)

Time savings during installation (general)

No automation = 100% energy consumption

Standard office: 4 lights, 4 windows, 2 radiators

Cable-based building automation – 30%...40% less energy consumption

Automation system with wireless sensors – energy savings **and** 70% less cables

Time savings during installation

Office area [m²]	Time s [ho	avings urs]	Time savings [man-days]	
	lighting & shading	lighting, shading & temperature control		
5.000	408	583	51 - 73	61-
10.000	817	1.167	102 - 146	
20.000	1.633	2.333	204 – 292	
50.000	4.083	5.833	510 - 729	

Source: ZVEH

Assumptions

- Average installation time 2.8 minutes/1m cable
- Approx. 1.8m cable per m² office space (lighting and shading)
- Approx. 2.5m cable per m² office space (lighting, shading and temperature control)

Time savings during installation (general)

	Step #1	Step #2	Step #3	Step #4	Step #5	Total			
	Preparation installation plan	Laying cables	Installing junction box	Connecting	Plastering & painting				
	Conventional technology								
Materials	-	€	-	€	€	€			
Labour	€	€	€€	€	€€€€	€€€€€€€€			
	Batteryless wireless technology								
	Installation receiver								
Materials	€€€	n/a	n/a	€€€	n/a	€€€€€€			
Labour	€	n/a	n/a	€	n/a	€			
Internet of Things (IoT)

IoT applications with EnOcean

Source: www.enocean-gateway.eu

Internet of Things (IoT) – Market overview

Gartner 2015:

>20 billion permanently networked devices by 2020

Category	2014	2015	2016	2020
Consumer	2.277	3.023	4.024	13.509
Business Cross-Industry	632	815	1.092	4.408
Business Vertical-specific	898	1.065	1.276	2.880
Grand Total	3.807	4.902	6.392	20.797

Internet of Things Units Installed Base by Category [Millions of Units], Gartner (November 2015)

TSensor Summit (October 2013): 50 trillion networked sensors by 2032

How can 50 trillion sensors be powered and connected?

Energy for the Internet of Things (IoT): trillions of sensors

Batteries - not always practical or useful

Manufacturing 10 trillion CR 2032 batteries takes 1 million tons of lithium

- Current global yearly lithium production approx. 20.000 tons*
- Total global lithium reserves estimated 11 million tons*

Batteries can fail and require substitution, stocking and disposal

Discharged batteries mean inactive devices and system failures requiring service calls (Hotline) and, perhaps, onsite technical support

Internet of Things (IoT)

Wireless sensors – sensory organs for the IoT

- Sensors connected by cables and/or powered by batteries can be excluded due to practical, ecological and economic reasons
- Batteryless, wireless technology is the only way forward

SmartHome – one of countless IoT applications

- In a few years' time, SmartHome technology will be the norm
- The demand for retrofits in older properties will become huge

Outdoor applications

- IoT applications for outdoor use will also play an important role
- Parking and traffic management
- Smart Agriculture
- Water management (supply and disposal, flood management)

Cognitive (learning) buildings

Evolution: from automated to cognitive (learning) buildings

Automated buildings (1980 – 2000)

Control & visualization

- + Good for manual monitoring
- + Recognizes serious problems
- No information concerning inefficient use of energy

Intelligent buildings (2000 – 2015)

Energy management

- + Monitors energy consumption of central systems and rooms
- Only monitors the main parameters

Cognitive buildings (> 2015)

Learning behaviour

- + Model-based control at individual workplace level
- Understands energy flow in the building and its allocation/utilization
- + Learns user behaviour (comfort) and the influence of context, e.g. the weather
- Requires analytic tools capable of elaborating a large quantity of data

Source: IBM Global Business Services 2016

Cognitive building: example hotel/campus

Cognitive building: example office

EnOcean applications

- Office building
 - Office / open-plan office
 - Administration building
- School
- Hospitality
 - Hotel room
 - Student's room
- Hospital
- Ambient Assisted Living (AAL)
- Residential building
 - Living room
 - Kitchen
 - Bedroom
 - Children's room
 - Bathroom
 - Detached house
 - Apartment building
- Retail facility
- Historic building
- Industrial facility

Benefits

Architects

- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

- Simplified planning and high flexibility through freely positionable devices
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors

- Speedy, flexible installation / system start-up
- No cabling, no drilling, no noise/dust/dirt
- Simple retrofit during undisturbed operation

Investors / Property Owners

- Reduced cost of installation and operation and operation
- Flexible space planning and easy restructuring
- Fast space conversion for quick tenant turnaround
- High energy savings
- Higher productivity

Facility Managers

- Flexibility and freedom from maintenaance
- Optimized servicing
- Effective manpower use
- No cabling, no drilling, no noise/dust/dirt
- Increased safety levels^{ontacts turn off the HVAC system}
- Faster reactions to system faults
- Interoperable and scalable standard solutions

Facility users

- Enhanced comfort
- Pleasant, productive working environment

monitor fluid leaks.

Benefits

Occupancy sensors switch off lights and HVAC in unoccupied rooms.

Architects

- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

- Simplified planning and high flexibility through freely positionable sensors
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors

- Speedy, flexible installation / system start-up
- No cabling, no drilling, no noise/dust/dirt
- Simple retrofit during undisturbed operation

Networked smoke sensors reliably detect smoke and warn of fire risk.

Investors / Property Owners / School Authorities

- Reduced cost of installation and operation
- Flexible space planning and easy restructuring
- High energy savings
- Interoperable and scalable standard solutions

Facility Managers

- Flexibility and freedom from maintenance
- Optimized servicing
- Effective manpower use
- Increased safety levels
- Faster reaction to system faults
- Interoperable and scalable standard solutions

Facility users

- Enhanced comfort
- Pleasant, productive learning environment

Benefits

Architects Services

- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

m

- Simplified planning and high flexibility through freely positionable sensors
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors

- Speedy, flexible installation / system start-up
- No cabling, no drilling, no noise/dust/dirt

Wireless actuators control radiators, room controllers

govern underfloor heating.

Occupancy sensors switch off

Investors / Property Owners

- Reduced cost of installation and operation
- Flexible space planning and easy restructuring
- Less downtime during renovation
- High energy savings
- Interoperable and scalable standard solutions

Facility Managers

- Flexibility and freedom from maintenance
- Optimized servicing
- Effective manpower use
- Increased safety levels
- Faster reaction to system faults
- Interoperable and scalable standard solutions

Facility users

Enhanced comfort

Batteryless liquid detection sensors monitor fluid leaks.

Benefits

Occupancy sensors switch off lights and HVAC in unoccupied rooms.

Architects

- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

- Simplified planning and high flexibility through freely positionable devices
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors

- Speedy, flexible installation / system start-up
- No cabling, no drilling, no noise/dust/dirt
- Simple retrofit during undisturbed operation

Wireless actuators control radiators.

Networked smoke sensors reliably detect smoke and warn of fire risk.

Investors

- Reduced cost of installation and operation
- Less downtime during renovation
- High energy savings
- Interoperable and scalable standard solutions

Facility Managers

- Flexibility and freedom from maintenance
- Optimized servicing
- Effective manpower use
- Increased safety levels
- Faster reaction to system faults
- Interoperableaund scalablee standard solutions
- Flexible space reallocation (patient room, therapy room or staff room)
- Combinable with nurse call systems

Facility users

- Enhanced comfort
- Better air quality

Ambient Assisted Living (AAL)

Ambient Assisted Living (AAL)

 Architects Maintenance-free, interoperable wireless sensors Freely positionable products can be placed on glass, stone, wood or furniture as required Flexible room configuration 	 Investors Simple retrofit Reduced cost of installation Less downtime during renovation High energy savings Interoperable and scalable standard solutions
 Specifiers Simplified planning and high flexibility through freely positionable devices Interoperable products Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP) 	 Facility Managers Flexibility and freedom from maintenance Optimized servicing Effective manpower use Increased safety levels Faster reaction to system faults
 System integrators / Contractors Speedy, flexible installation / system start-up No cabling, no drilling, no noise/dust/dirt Simple retrofit during undisturbed operation 	 Interoperable and scalable standard solutions Flexible space reallocation (patient room, therapy room or staff room) Combinable with nurse call systems
 Enhanced comfort Freely positionable and retrofittable products e.g. emergency call button, mattress sensors 	Batteryless liquid detection sensors monitor fluid leaks.

Kitchen

Kitchen

Kitchen

Benefits

Architects

- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

In

mi

ma

- Simplified planning and high flexibility through freely positionable sensors
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors

Speedy, flexible installation / system start-up

Batteryless liquid detection sensors monitor fluid leaks.

Networked smoke sensors

Investors / Property Owners

- Simple retrofit
- Reduced cost of installation and operation
- Flexible space planning and easy restructuring
- High energy savings unblind actuators
- Interoperable and scalable solutions
- All-encompassing solutions

Facility users

- Increased safety levels
- Enhanced comfort
- Simple retrofit
- Freely positionable products
- Cost-effective SmartHome solutions
- No cabling, no drilling, no noise/dust/dirt

Networked smoke sensors reliably detect smoke and warn of

Benefits

Architects

- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

- Simplified planning and high flexibility through freely positionable sensors
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors

Speedy, flexible installation / system start-up

Investors / Property Owners

- Simple retrofit
- Reduced cost of installation and operation
- Flexible space planning and easy restructuring
- High energy savings
- Interoperable and scalable solutions
- All-encompassing solutions

Facility users

- Increased safety levels
- Enhanced comfort witches control lighting and
- Simple retrofit
- Freely positionable products
- Cost-effective SmartHome solutions
- No cabling, no drilling, no noise/dust/dirt

Wireless actuators govern underfloor heating.

Networked smoke sensors reliably detect smoke and warn of fire risk

Benefits

Architects

- Maintenance-free, interoperable wireless sensors
- Frely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

- Simplified planning and high flexibility through freely positionable sensors
- Interoperable products turn off the HVAC system whe
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

Systemi ntegrators /

Speedy, flexible installation / system start-up

Investors / Property Owners

100

- Simple retrofit
- Reduced cost of installation and operation
- Flexible space planning and easy restructuring
- High energy savings in temperature
- Interoperable and scalable solutions
- All-encompassing solutions

Facility users

- Increased safety levels
- Enhanced comfort
- Simple retrofit
- Freely positionable products
- Cost-effective SmartHome solutions
- No cabling, no drilling, no noise/dust/dirt

Wireless actuators govern underfloor heating.

Benefits

Architects

- Maintanance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

- Simplified planning and high flexibility through freely positionable sensors
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors

Speedy, flexible installation / system start-up radiators

Investors / Property Owners

- Simple retrofit
- Reduced cost of installation and operation units
- Flexible space planning and easy restructuring
- High energy savings
- Interoperable and scalable solutions
- All-encompassing solutions

Facility users

- Increased safety levels
- Enhanced comfort
- Simple retrofit
- Freely positionable products
- Cost-effective SmartHome solutions
- No cabling, no drilling, no noise/dust/dirt

sensors monitor fluid leaks

shading.

Batteryless wireless

Benefits

Networked smoke sensors reliably detect smoke an inve

Architects

- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration for the second secon

Specifiers

Ba

CC

W

- Simplified planning and high flexibility through freely positionable devices
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

tacts turn off the HVAC system

System integrators / Contractors

Speedy, flexible installation / system start-up

Investors / Property Owners

- Simple retrofit
- Reduced cost of installation and operation
- Flexible space planning and easy restructuring
- High energy savings
- All-encompassing solutions
- More attractive purchase proposition

Facility users

- Increased safety levels
- Enhanced comfort
- Pleasant living environment
- Simple retrofit
- Freely positionable products
- Cost-efficient SmartHome solutions
- No cabling, no drilling, no noise/dust/dirt

th Benefits ke sensors

liably detect smoke and warn of

Architects

r∈ fii

- Maintenance-free, interoperable wireless sensors
- Freelyy positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

- Simplified planning and high flexibility through freely positionable devices
- Interoperable products
- Compativility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors

- Speedy, flexible installation / system start-up
- No cabling, no drilling, no noise/dust/dirt

Investors / Property Owners

- Reduced cost of installation and operation
- Flexible space reallocation
- Easy modernization
- High energy savings
- Interoperable and scalable standard solutions

Facility Managers

- Flexibility and freedom from maintenance
- Optimized servicing
- Effective manpower use
- Increased safety levels
- Faster reaction to system faults
- Interoperable and scalable standard solutions
- No cabling, no drilling, no noise/dust/dirt

Facility users

Batteryless door contacts monitor door status .

- Extensive energy savings
- Enhanced comfort

Retail facility

Retail facility

Retail facility

Retail facility

Benefits

Architects

- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

- Simplified planning and high flexibility through freely positionable devices
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP)

System integrators / Contractors

- Speedy, flexible installation / system start-up
- No cabling, no drilling, no noise/dust/dirt

Investors / Property Owners

- Reduced cost of installation and operation
- Flexible space reallocation
- Easy modernization
- High energy savings
- Interoperable and scalable standard solutions

Facility Managers

- Flexibility and freedom from maintenance
- Optimized servicing
- Effective manpower use
- Increased safety levels
- Faster reaction to system faults
- Interoperable and scalable standard solutions
- No cabling, no drilling, no noise/dust/dirt

Batteryless liquid detection sensors monitor fluid leaks.

Batteryless wireless window handles or window contacts turn off the HVAC system when the windows are open.

Batteryless wireless switches govern lighting and shading.

Light actuators control lighting

Benefits

Architects

- Maintenance-free, interoperable wireless sensors
- Freely positionable products which can be placed on glass, stone, wood or furniture as required
- Flexible room configuration

Specifiers

00

- Simplified planning and high flexibility through freely positionable devices
- Interoperable products
- Compatibility with other building automation systems (KNX, LON, BACnet, TCP/IP) meters get

System integrators / Contractors

- Speedy, flexible installation / system start-up
- No cabling, no drilling, no noise/dust/dirt
- Simple retrofit during undisturbed operation

Investors / Property Owners

- Reduced cost of installation and operation
- Flexible space reallocation and easy restructuring
- Less downtime during renovation
 - High energy savings

Facility Managers

- Fewer cables thanks to maintenance-free wireless sensors
- Flexibility and freedom from maintenance
- Reduced cost of installation and operation
- Interoperable and scalable standard solutions
- No noise/dust/dirt

Batteryless liquid detection

Impact of building automation and of EnOcean upon the certification of buildings

Торіс	Criteria group	N.	Criteria	Share of overall score
Ecological Quality (ENV)	Effect on global and local environment	ENV 1.1	Ecological balance – emission-based environmental impact	7,9%
		ENV 1.2	Risk for the local environment	3,4%
		ENV 1.3	Ecologically friendly material procurement	1,1%
	Resource impact and waste management	ENV 2.1	Ecological balance – primary energy	5,6%
		ENV 2.2	Drinking water and waste water balance	2,3%
		ENV 2.3	Space requirement	2,3%
Economic Quality (ECO)	Lifecycle costs	ECO 1.1	Building-related lifecycle costs	9,6%
	Value development	ECO 2.1	Flexibility and reutilization potential	9,6%
		ECO 2.2	Marketability	3,2%

Relevant criteria for EnOcean technology is highlighted

Excerpt "Bewertungsmatrix für Neubau Büro und Verwaltungsgebäude Version 2012 in Anlehnung an DGNB (Teil 1/2)"

Торіс	Criteria group	N.	Criteria	Share of overall score
Socio-cultural and functional quality (SOC)	Health, comfort and user satisfaction	SOC 1.1	Thermic comfort	4,3%
		SOC 1.2	Indoor air quality	2,6%
		SOC 1.3	Acoustic comfort	0,9%
		SOC 1.4	Visual comfort	2,6%
		SOC 1.5	User's influence	1,7%
		SOC 1.6	Outdoor air quality	0,9%
		SOC 1.7	Safety and risk of malfunction	0,9%
	Functionality	SOC 2.1	Barrier-free access	1,7%
		SOC 2.2	Public access	1,7%
		SOC 2.3	Bicycle comfort	0,9%
	Creative qualities	SOC 3.1	Procedure for urban and artistic concept	2,6%
		SOC 3.2	Artistic building	0,9%
		SOC 3.3	Layout quality	0,9%

Excerpt "Bewertungsmatrix für Neubau Büro und Verwaltungsgebäude Version 2012 in Anlehnung an DGNB (Teil 1/2)"

Торіс	Criteria group	N.	Criteria	Share of overall score
Technical quality (TEC)	Quality of the technical execution	TEC 1.1	Fire protection	4,1%
		TEC 1.2	Sound insulation	4,1%
		TEC 1.3	Heat and dampness protection qualities of the building's cladding	4,1%
		TEC 1.4	Adaptability of the technical systems	2,0%
		TEC 1.5	Ease of cleaning and maintenance of the building's structure	4,1%
		TEC 1.6	Ease of dismantling	4,1%
		TEC 1.7	Immission protection	0,0

Excerpt "Bewertungsmatrix für Neubau Büro und Verwaltungsgebäude Version 2012 in Anlehnung an DGNB (Teil 1/2)"

Integrated building automation impacts the following topics: ecological quality (ENV), economic (ECO), socio-cultural and functional quality (SOC) and technical quality (TEC). 11 out of 29 DGNB criteria are positively and sustainably affected^{*}. The application of **EnOcean technology** influenced **10 out of 29 criteria**.

* Source:

"Peer Schmidt, Nachhaltigkeit durch Gebäudeautomation am Beispiel der DGNB-Kriterien (Gebäudeautomation, Jahrbuch 2015)"

Торіс	Criteria group	N.	Criteria	Share of overall score
Process quality (PRO)	Planning quality	PRO 1.1	Quality of project preparation	1,4%
		PRO 1.2	Integral planning	1,4%
		PRO 1.3	Proof of optimization and complexity of the planning approach	1,4%
		PRO 1.4	Safeguards for sustainability in the tender and award process	1,0%
		PRO 1.5	Creation of preconditions for an optimal utilization and management	1,0%
	Execution quality	PRO 2.1	Building site, building process	1,0%
		PRO 2.2	Quality assurance for the building process	1,4%
		PRO 2.3	Orderly system start-up	1,4%

Excerpt "Bewertungsmatrix für Neubau Büro und Verwaltungsgebäude Version 2012 in Anlehnung an DGNB (Teil 1/2)"

An optimized planning process, and the resulting construction with a systematic start-up phase and an implemented quality assurance system, can significantly improve process quality (criteria PRO 1.1 to PRO 2.3).

Source:

Peer Schmidt, Nachhaltigkeit durch Gebäudeautomation am Beispiel der DGNB-Kriterien (Gebäudeautomation, Jahrbuch 2015)

The application of **EnOcean technology**, together with an adapted planning and execution process, positively and sustainably affected **18 out of 37 DGNB criteria**. These 18 criteria account for more than 2/3 of the overall ranking.

Gesamter- füllungsgrad	Mindester- füllungsgrad	Auszeichnung
ab 35%	—%	Bronze*
ab 50%	35 %	Silber
ab 65%	50 %	Gold
ab 80 %	65 %	Platin
asa Auszaichoung ailt	nur für Postandsonhäu	Quelle

Case studies / References

Case study: multi-purpose building The Squaire – Frankfurt Airport

Basic facts

- Length: 660 metres (2 x Eiffel Tower)
- Width: 65 metres
- Height: 45 metres (9 storeys)
- Usable area: 140.000 m²
- Project costs: 1.4 billion €
 - 21 million € threof spent on automation
- More than 20.000 EnOcean sensors and actuators in place

1. Can Division and the second s	
Devices	quantity
EnOcean terminals	1.838
EnOcean switches	12.000
EnOcean room sensors	6.000
PLC for Plants and Room Automation	899
PLC for BACnet communication	56
PLC for DALI	25
MP Bus-Terminal	2.119
DALI terminal	89
EIA422/485 terminal	6
KNX terminal	20

Case study: lighting in office building Torre Espacio - Madrid

4.200 batteryless wireless devices

- Light switches
- Occupancy sensors
- Light sensors

Savings*

- 30% to 40% of the cost of lighting
 - Ambient-light-dependent interior lighting
 - Occupancy-sensor-triggered light shutdown
- 32 km cables, saving
 - □ 1.2 t copper / 4.5 t CO₂
 - □ 2.8 t PVC / 7.5 t CO₂
 - Many man-years in installation time
- 42.000 batteries (over 25 years)
- Thereafter: 80% of restructuring costs

* own calculation

References: office buildings

Schneider Electric Research and Development, Montreal (Canada)

NYC Department of Sanitation (USA)

Vossloh-Schwabe Office Shanghai (China) ADAC Headquarters Munich (Germany)

References: hotels

Energy Saving Hotels (USA)

Platzl Hotel, Munich (Germany) Springhill Suites, Natomas (USA) Hainan Airline Hotel (China)

References: hospitals and AAL

Senior citizens home, Asslar (Germany) VA Medical Center, Dayton, OH (USA)

Institut de Cardiologie (Kanada) Müritz Clinic (Germany)

References: residential buildings

Empowerhouse, Washington D.C. (USA) B10 Active House (Germany) Shanghai Villa (China) Weberhaus (Germany)

References: retail facilities

Changi City Point (Singapur) Morrisons Distribution Toys R Us (UK) Center (UK) Xtramart Convenience Store (USA)

References: schools

Center for Virtual Engineering ZVE (Germany) Sir Isaac Newton Academy (UK) Georgia Institue of Technology (USA) University of Western Ontario (Canada)

References: industrial facilities

Wayne County Airport Authority Maintenance Facilities (USA) BMW production plant Aggreko Factory (UK) (Germany)

Cardboard production plant (Canada)

References: historic buildings

Taimadera Buddhistischer Temple (Japan) Semperoper, Dresden (Germany) Queen Annes Gate (UK) St. Andrews Cathedral (Canada)

References: further projects

Entega Loge (Germany) Imtech Arena (Germany)

SCHEIBER Boats

Yacht "Feretti 830" (Brazil)

Case study: green building certifications

Leggat MacCall Properties, Boston

Promutuel Insurance Company, Quebec

Videos

Videos

www.enocean-alliance.org www.youtube.com/user/EnOcean

Videos

EnOcean YouTube channel: EnOcean technology for intelligent and green buildings

(c) EnOcean Alliance | Graham Martin | Nov 2017

Any questions?

Contact Please get in touch if you need further information:

EnOcean Alliance 2400 Camino Ramon, Suite. 375 San Ramon, CA 94583 USA

info@enocean-alliance.org www.enocean-alliance.org

